Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon

نویسندگان

  • Xin Dong
  • Shangyu Chen
  • Sinno Jialin Pan
چکیده

How to develop slim and accurate deep neural networks has become crucial for realworld applications, especially for those employed in embedded systems. Though previous work along this research line has shown some promising results, most existing methods either fail to significantly compress a well-trained deep network or require a heavy retraining process for the pruned deep network to re-boost its prediction performance. In this paper, we propose a new layer-wise pruning method for deep neural networks. In our proposed method, parameters of each individual layer are pruned independently based on second order derivatives of a layer-wise error function with respect to the corresponding parameters. We prove that the final prediction performance drop after pruning is bounded by a linear combination of the reconstructed errors caused at each layer. By controlling layer-wise errors properly, one only needs to perform a light retraining process on the pruned network to resume its original prediction performance. We conduct extensive experiments on benchmark datasets to demonstrate the effectiveness of our pruning method compared with several state-of-the-art baseline methods. Codes of our work are released at: https://github.com/csyhhu/L-OBS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Net-Trim: A Layer-wise Convex Pruning of Deep Neural Networks

and quantum settings Model reduction is a highly desirable process for deep neural networks. While large networks are theoretically capable of learning arbitrarily complex models, overfitting and model redundancy negatively affects the prediction accuracy and model variance. Net-Trim is a layer-wise convex framework to prune (sparsify) deep neural networks. The method is applicable to neural ne...

متن کامل

Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee

Model reduction is a highly desirable process for deep neural networks. While large networks are theoretically capable of learning arbitrarily complex models, overfitting and model redundancy negatively affects the prediction accuracy and model variance. NetTrim is a layer-wise convex framework to prune (sparsify) deep neural networks. The method is applicable to neural networks operating with ...

متن کامل

Unsupervised Layer-Wise Model Selection in Deep Neural Networks

Deep Neural Networks (DNN) propose a new and efficient ML architecture based on the layer-wise building of several representation layers. A critical issue for DNNs remains model selection, e.g. selecting the number of neurons in each DNN layer. The hyper-parameter search space exponentially increases with the number of layers, making the popular grid search-based approach used for finding good ...

متن کامل

Understanding Autoencoders with Information Theoretic Concepts

Despite their great success in practical applications, there is still a lack of theoretical and systematic methods to analyze deep neural networks. In this paper, we illustrate an advanced information theoretic methodology to understand the dynamics of learning and the design of autoencoders, a special type of deep learning architectures that resembles a communication channel. By generalizing t...

متن کامل

On layer-wise representations in deep neural networks

On Layer-Wise Representations in Deep Neural Networks It is well-known that deep neural networks are forming an efficient internal representation of the learning problem. However, it is unclear how this efficient representation is distributed layer-wise, and how it arises from learning. In this thesis, we develop a kernel-based analysis for deep networks that quantifies the representation at ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017